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Abstract

Previous studies have indicated that cumulative L5/S1 joint load is a potential risk factor for low 

back pain. The assessment of cumulative L5/S1 joint load during a field study is challenging due 

to the difficulty of continuously monitoring the dynamic joint load. This study proposes two 

regression models predicting cumulative dynamic L5/S1 joint moment based on the static L5/S1 

joint moment of a lifting task at lift-off and set-down and the lift duration. Twelve men performed 

lifting tasks at varying lifting ranges and asymmetric angles in a laboratory environment. The 

cumulative L5/S1 joint moment was calculated from continuous dynamic L5/S1 moments as the 

reference for comparison. The static L5/S1 joint moments at lift-off and set-down were measured 

for the two regression models. The prediction error of the cumulative L5/S1 joint moment was 

21±14 Nm × s (12% of the measured cumulative L5/S1 joint moment) and 14±9 Nm × s (8%) for 

the first and the second models, respectively.
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1. Introduction

Lifting tasks have been identified as a risk factor for work-related low back pain (LBP) 

(Lotters et al. 2003, Kuiper et al. 2005). Previous literature has suggested that spinal load on 

the low back can contribute to LBP (Chaffin and Park 1973, Norman et al. 1998). From a 

biomechanical perspective, it is hypothesised that low back injury is developed when the 

spinal load exceeds the strength tolerance of the low back joint (McGill 1997). Therefore, 

the forces and moments of the lumbosacral (i.e. the L5/S1) joint in relation to tissue 

tolerance of the spinal joint have been frequently studied for various lifting activities 

(Plamondon et al. 1996, Marras et al. 2006, Faber et al. 2011). Among the studied spinal 

variables, the peak value of the L5/S1 joint loading for various lifting tasks has been widely 

investigated (Skotte 2001, Lavender et al. 2003, Shin and Mirka 2004, Jiang et al. 2005) as 
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it is assumed that injuries occur once peak mechanical load exceeds the failure tolerance 

(McGill 1997).

Besides the peak load of the L5/S1 joint, several studies have focused on the relationship 

between LBP and estimated cumulative L5/S1 joint loads for different job tasks (Kumar 

1990, Norman et al. 1998, Santaguida et al. 2005, Gregory et al. 2009). It has been found 

that cumulative compression and shear forces over a work shift were significantly higher in 

the group of institutional aides with back pain than in the group without back pain (Kumar 

1990). In a study investigating workers in the automotive industry, it was found (Norman et 

al. 1998) that workers with increased cumulative L4/L5 moment over a work shift were 

more likely to report LBP (Odds Ratio: 1.6). In a review paper by Waters et al. (2006), the 

cumulative L5/S1 joint loading was summarised to be an important contributing factor for 

LBP. McGill (1997) hypothesised that sustained spinal loading for a long duration caused 

degraded tolerance of spinal tissues, which eventually reduced the margin of safety to zero.

One challenge of assessing the cumulative joint load during a field survey is that the joint 

load during the course of a lifting task varies. The varying joint loads at each time instant 

need to be identified in order to calculate the cumulative load accurately for the entire lifting 

task. This calculation procedure, however, may be laborious. In order to reduce the process 

time for calculating the cumulative joint load, Callaghan et al. (2001) investigated a few 

simplified methods and found that identifying the joint load at 5 frames/s in a video clip of 

the task preserved the time varying information and provided a good estimate of the 

cumulative joint load with 1.8% absolute error. With this frame rate, however, the authors 

indicated that a long processing time was still required (Callaghan et al. 2001). A recent 

study (Waters et al. 2011) made an untested hypothesis that the integrated cumulative 

dynamic low back joint load from lift-off to set-down may be approximated by the static 

joint load at the lift-off point multiplied by the time between the lift-off and set-down 

instants (i.e. the time for the course of a lifting task). This method can potentially simplify 

the assessment process of the cumulative low back joint load since the load can be easily 

estimated by identifying only the joint load at the lift-off point and the duration of the lift.

The goal of the current study was to evaluate two methods using the static L5/S1 joint 

moment at one or two time points to estimate the cumulative dynamic L5/S1 joint moments 

of lifting tasks for future field research. The first method was a regression model based on 

the mean of the static L5/S1 joint moments at both the lift-off and set-down points and the 

duration of the lifting task. The second method was based on the static L5/S1 joint moment 

only at the lift-off point and the duration of the lifting task. It was expected that, for both 

methods, the static L5/S1 joint moment would have a linear relationship with the cumulative 

dynamic L5/S1 joint moment during a lifting period from lift-off to set-down.

2. Methods

A lifting experiment was designed to provide reference cumulative dynamic L5/S1 joint 

moments during various lifting conditions (Figure 1). Because of the constraint of the 

experimental setup, only male participants were recruited and took part in the experiment 

(12 male participants, age: 47.5±11.3 years, height: 1.74±0.07 m, body mass: 84.5±12.7 kg). 

Xu et al. Page 2

Ergonomics. Author manuscript; available in PMC 2015 December 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The experimental protocol was approved by the relevant Institutional Review Board. Prior to 

the experiment, the testing procedures were explained to the participants and their informed 

consent was obtained. The participants lifted a plastic crate (10 kg, Width × Depth × 

Height=39 cm × 31 cm × 22 cm) in front of them and placed it on an adjustable shelf. The 

shelf height was set up for each participant to accommodate three levels of lifting ranges: 

from floor to knuckle height, floor to shoulder height, and knuckle to shoulder height. The 

lifting ranges were combined with three levels of asymmetric angles including 0 deg, 30 deg 

to the right, and 60 deg to the right, which resulted in a total of nine lifting conditions for 

each participant. These lifting conditions covered most lifting conditions in practice in terms 

of lifting range and asymmetric angle (Dempsey 2003). The weight of the plastic crate was 

set to 10 kg so that it would not exceed the National Institute for Occupational Safety and 

Health (NIOSH) recommended weight limit in tested lifting conditions (Waters et al. 1993). 

The participants were instructed to perform each lifting task using their choice of lifting 

style (i.e. free style method of lifting) and lifting speed, without moving their feet. The 

initial horizontal distance between the crate and the participants was not restricted. Before 

the experiment, the participants had five minutes to practice. For each lifting condition, two 

repetitions were performed. A total of 18 lifts (3 lifting heights × 3 asymmetric angles × 2 

repetitions) were assigned to each participant in random order. A 15-second break was given 

between each lift.

The 3D spatial positions of the participants’ body joints during the lifting tasks were 

measured at 100 Hz by an optoelectronic motion tracking system (Motion Analysis, Santa 

Rosa, CA). Reflective markers for the system were attached on the crate and over several 

anatomical landmarks of the participants’ body segments including shanks (lateral and 

medial malleolus), thighs (lateral and medial femur epicondyle, trochanter), pelvis (left and 

right ASIS, midpoint between left and right PSIS,), trunk (navel, spine at 10th rib height, 

xyphion, T6, suprasternal, C7), head (left and right tragion, head vertex), forearm (radial and 

ulnar styoid), and upper arm (lateral and medial humeral epicondyle, acromion) 

(McConville et al. 1980). To minimise motion artefacts of the reflective markers during data 

collection, the participants wore only shorts and shoes during the experiment. In addition, 

the ground reaction forces were measured by two force plates (Model: 9286AA, Kistler, 

Switzerland), which were synchronised with the motion tracking system with a sampling 

frequency of 100 Hz. The raw kinematic and force plate data were filtered with a 4th order 

Butterworth low pass filter at 8 Hz. A trigger was mounted at the bottom of the crate to 

record the onset (lift-off) and cessation (set-down) of each lifting task.

For each individual lifting trial, the static L5/S1 joint moments were calculated by a top-

down 3-D linked segment model which was based on the position of trunk, upper 

extremities, and load (Kingma et al. 1996; Plamondon et al. 1996). Ideally, for the purpose 

of comparisons, the dynamic L5/S1 joint moments should have been calculated using the 

same top-down method. However, using the top-down method for calculating dynamic body 

joints required monitoring real-time hand contact forces during the lifting task. Due to the 

limitations of the apparatus used in the study, real-time measurements of hand forces were 

not feasible. Alternatively, a bottom-up 3-D link segment model based on the movement of 

the lower extremities and ground reaction force was used in the current study to calculate the 
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dynamic L5/S1 joint moments (Kingma et al. 1996, Plamondon et al. 1996). As the vector 

summation of the L5/S1 moments in 3-D has a high correlation with the L5/S1 compression 

force and a moderate correlation with the shear force during varying lifting tasks (van Dieen 

and Kingma 2005), both the static and dynamic L5/S1 moments were determined by the 

vector summation. The reference cumulative dynamic L5/S1 joint moment was calculated 

by a rectangular integration of the dynamic L5/S1 joint moments (the area under the thick 

solid curve in Figure 2).

A preliminary data analysis showed that repetition did not have a significant effect on the 

outcome variables. Therefore, the mean of the two repetitions was calculated for each 

condition to build the entire dataset for reducing the sampling error. The entire dataset, 

including each trial and each participant, was then used for building the regression models. 

The first regression model (Equation (1)) was based on the static L5/S1 joint moment at lift-

off multiplied by the time between lift-off and set-down (the area of the rectangle under the 

dash-dot line in Figure 2).

(1)

where C is the vector summation of the reference cumulative dynamic L5/S1 joint moment 

from lift-off to set-down (Nm × s),

Slift-off is the vector summation of the static L5/S1 joint moment at lift-off (Nm),

tlift-off is the time instant of lift-off (s),

tset-down is the time instant of set-down (s),

a1 is the slope of the first linear regression model,

b1 is the intercept of the first linear regression model,

and ε1 is the error term (residual) of the second regression model.

The second regression model (Equation (2)) was based on the mean of the static L5/S1 joint 

moments at lift-off and set-down multiplied by the time between these two time instants (the 

area of the trapezoid under thεe dash line in Figure 2).

(2)

where C is the vector summation of the reference cumulative dynamic L5/S1 joint moment 

from lift-off to set-down (Nm × s),

Sset-down is the vector summation of the static L5/S1 joint moment at set-down (Nm),

a2 is the slope of the second linear regression model,

b2 is the intercept of the second linear regression model,

and ε2 is the error term (residual) of the second regression model.

According to the shape of the areas, these two methods are referred to as the RECTANGLE 

method and TRAPEZOID method, respectively.
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The null hypotheses that the slope was equal to one and the intercept was equal to zero were 

tested for the two regression models. A paired t-test was used to examine whether the 

absolute errors (absolute value of the residual) of the estimated cumulative dynamic L5/S1 

joint moments of these two regression models were significantly different from each other. 

Within each regression model, a repeated-measures analysis of variance (ANOVA) was 

performed on the absolute error to test for the effects of the two independent variables 

(lifting range and asymmetric angle) and their two-way interaction term. The participants 

were treated as a block in the ANOVA. A p-value < 0.05 was considered to be statistically 

significant.

3. Results

The results indicated that the cumulative dynamic L5/S1 joint moment was linearly 

correlated to the area of both the RECTANGLE and the TRAPEZOID (Figure 3). The 

regression equation of the first model (RECTANGLE method) was

(3)

The coefficient of determination (R-square) of the regression model was 0.83. The mean of 

absolute value of error term was 21±14 Nm × s, or 12% in terms of the percentage of the 

cumulative moment, with a skewness of 0.8. The root mean squared error term was 25.2 Nm 

× s.

The regression equation of the second model (TRAPEZOID method) was

(4)

The coefficient of determination (R-square) of the regression model was 0.93. The mean of 

absolute value of error term was 14±9 Nm × s, or 8% in terms of the percentage of the 

cumulative moment, with a skewness of 1.1. The root mean squared error term was 16.7 Nm 

× s.

For both regression models, the null hypotheses that the slope is equal to one and the 

intercept is equal to zero were rejected (p < 0.001). The result of the paired t-test indicated 

that the absolute error of the TRAPEZOID method was significantly smaller than that of the 

RECTANGLE method (p < 0.001). The ANOVA results indicated that lifting range was the 

only factor that significantly influenced the absolute error of the TRAPEZOID method and 

RECTANGLE method (Table 1 and Figure 4). Without using the model to correct, the area 

of RECTANGLE and TRAPEZOID overestimate the reference cumulative dynamic L5/S1 

joint moment for all 9 lifting conditions (Table 2).

4. Discussion

Continuous 3D motion data are essential for the determination of the cumulative L5/S1 joint 

load over the course of a lifting task using a biomechanical model. Since using a traditional 
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optoelectronic motion monitoring system is not feasible for most field surveys, many studies 

started focusing on using other technologies for measuring body movement, such as inertial 

measurement unit (Luinge and Veltink 2005, Faber et al. 2010) and ultrasound receiver 

(Marras et al. 2010). While those technologies offer great promise for quantifications of 

dynamic spinal loading in the field, applications of the technologies are still limited in some 

industrial settings (Marras et al. 2010, de Vries et al. 2010).

The results of the current study indicate that the area of RECTANGLE and the area of 

TRAPEZOID had an approximate linear relationship to the reference cumulative dynamic 

L5/S1 joint. This finding may provide an alternative method for estimating cumulative 

L5/S1 joint moments based on the static L5/S1 moment at lift-off and at set-down, and the 

time duration from lift-off to set-down. The required static moment and time duration data 

could be estimated from posture analysis using video clips frames combined with a 

biomechanical model.

The TRAPEZOID method had a better estimate compared with the RECTANGLE method 

since the TRAPEZOID method included the static L5/S1 joint moment at both lift-off and 

set-down while the RECTANGLE method only employed the static moment at lift-off. 

However, inclusion of one more static moment as input data in the TRAPEZOID method 

would require collecting additional posture data at the set-down during the field survey. 

Processing the extra data would generally double the analysis time that would be required 

for the RECTANGLE method. Therefore, the choice of these two methods depends on the 

availability of resources and the accuracy required for a field survey.

The area of the RECTANGLE in RECTANGLE method in the current study was similar to 

the ‘work only’ method examined in Callaghan et al. (2001) for estimating the cumulative 

moment of the L4/L5 joint during lifting tasks. In their study, the cumulative spinal moment, 

calculated by the load held by hands multiplied by the time period for the hand loading, was 

termed ‘work-only’ method. It was compared with the reference data which was the 

integration of the static L4/L5 joint moment for the entire lifting cycle, including the time 

before lift-off and the time after set-down. Their results showed that the ‘work only’ method 

underestimated the cumulative L4/L5 joint moment by approximately 15–25% when 

compared to their reference. In the current study, the area of the RECTANGLE was 49% 

greater than our reference cumulative L5/S1 joint moment on average (Table 2). The 

discrepancy in the results between these two studies was primarily attributed to the 

following two main reasons. First, the reference of the cumulative L5/S1 joint moment in 

the current study was integrated from lift-off to set-down, which did not include the 

preparation duration before the lift-off and finishing duration after set-down. A further 

analysis indicated that, on average, this partial cumulative L5/S1 moment accounted for 

52% of the cumulative moment of the entire lifting course in the current study. By including 

the data for the preparation and finishing durations for comparisons, the RECTANGLE 

method underestimated the total cumulative L5/S1 moment by an average 32.0% which was 

comparable to results reported in Callaghan et al. (2001). Second, the tested lifting tasks in 

the current study involved moving a crate from a low position to a high position but not vice 

versa. The static moment at lift-off used for estimating the cumulative moment was larger 

than the reference L5/S1 moment for most of the time from lift-off to set-down (Figure 2). 
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In the study in Callaghan et al. (2001), one lifting task involved lowering a weight from a 

high to a low position. Such a lifting task would have a lower static L5/S1 moment at the 

lift-off point to offset the overestimation.

In general, the more time frames used as input, the more precise the estimated cumulative 

moment (Andrews and Callaghan 2003). Therefore, adding additional frames between lift-

off and set-down can improve the accuracy of the estimate. However, it should be noted that 

the selection of the time frames can vary the error. For example, selecting four frames 

capturing lift-off, closest-to-body, highest point, and set-down would yield less error on the 

estimated body segment angular trajectories for a lifting task compared with four equal time 

interval frames (Hsiang et al. 1998). In the present study, if a third time frame was added, 

choosing the time frame where the local minimum occurred between lift-off and set-down 

seems to yield a better estimate than choosing the middle time frame (Figure 2). A further 

analysis showed that this would yield the following regression model

(5)

where Smin is the vector summation of the static L5/S1 joint moment when the local 

minimum occurs (Nm),

tmin is the time instant when the local minimum occurs (s),

The coefficient of determination (R-square) of the regression model was 0.99. The mean of 

absolute value of error term was 7±6 Nm × s, or 4% in terms of the percentage of the 

cumulative moment, with a skewness of 1.0. The root mean squared error term was 9.2 Nm 

× s. This result indicated that choosing the time when the local minimum occurred as the 

third frame could improve the estimate of the cumulative L5/S1 moment for the tested 

lifting tasks in the experiment. However, unlike lift-off and set-down, identifying this time 

frame from a video clip of a field survey could be challenging as the body posture in this 

frame may lack identifying characteristics. Therefore, the selection of the additional frame is 

likely to be task-dependent since the identification of body posture is in relation to a task. In 

comparison, equal time interval frames have a better accessibility since they can be easily 

extracted from a video clip by computer.

In the current study, the dynamic L5/S1 joint moment was calculated by the bottom-up 

method while the static L5/S1 joint moment was calculated by the top-down method. The 

top-down method seems to be more practical than the bottom-up method for field use 

because it does not require measurements of the ground reaction force for calculating the 

static L5/S1 moment. However, it requires continuous measurements of hand contact force 

for calculating the dynamic L5/S1 moment required, which was limited by our data 

collection instrumentation. Although alternatively the hand contact force can be estimated 

by calculating the acceleration of the plastic crate, the exact force transitions to the hands at 

lift-off and set-down would still be difficult to derive. Without accurate force transitions, the 

L5/S1 moment would contain unrealistic sudden jumps at lift-off and set-down. Previous 

research showed that the difference in calculating the dynamic L5/S1 joint moment between 

the top-down and bottom-up method was about 3.9% (Kingma et al. 1996). Therefore, it 
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should be noted that there is an error source in calculating the L5/S1 joint moment 

introduced by using different biomechanical models. However, the validity of the study 

results is unlikely to be significantly affected by errors inherent in the methodology 

difference since this error is much smaller than the variation of the measured L5/S1 joint 

moment.

A few study limitations should be noted. First, as the participants were free to choose their 

own lifting speed, this lifting speed can be categorised as ‘normal’ (Tsuang et al. 1992, Lin 

et al. 1999). Compared with fast lifting, the resultant dynamic component of the L5/S1 joint 

moment with normal lifting speed was relatively small. This makes the area representing 

overestimation larger than the area representing underestimation during the lifting course 

from lift-off to set-down (Figure 2), which results in overestimations of the cumulative 

dynamic moments by the area of RECTANGLE and TRAPEZOID. If the lifting speed were 

instructed to be faster, the dynamic moment from lift-off to set-down would have deviated 

from the static moment more (de Looze et al. 1994, Lavender et al. 2003). A previous study 

showed that when the dynamic component of the L5/S1 joint moment during a faster lifting 

speed was added to the static moment, the estimated peak L5/S1 moment was 1.25 times 

higher (Tsuang et al. 1992). Thus, it is speculated that the current regression equations might 

underestimate the cumulative dynamic L5/S1 joint moment for highly dynamic lifting tasks.

Second, only one 10 kg weight was used for the lifting tasks. A hand-held weight more than 

10 kg was not tested due to the NIOSH recommended weight limit for protecting human 

subjects from potential lifting-related injuries. Previous research indicates that the hand-held 

weight had a significant effect on the L5/S1 joint moment during lifting tasks, accounting 

for about 25% of the variance in the peak moment (Lavender et al. 2003). However, the 

effects of lifted weights on cumulative load or moment remain unclear. Generally, a heavy 

weight requires an increased force exertion for lifting and placing the weight, resulting in an 

increased static moment at the lift-off and set-down points. On the other hand, heavy 

weights may lead lifters to choose a slower lifting speed to reduce the dynamic component 

of the L5/S1 joint moment for protecting themselves (Lavender et al. 2003). Since both the 

static and the dynamic moments can be influenced by the weight, the coefficients of the 

regression equation could be altered as the weight load changes. In addition, only using a 10 

kg weight during the experiment may have limited the observation of intra-participant 

variability. Previous studies showed that intra-participant variability of L5/S1 moments 

increased with increasing external load and accounted for up to 24% of the total trunk 

moment variability during varying lifting conditions (Mirka and Baker 1993, Granata et al. 

1999). With an increased intra-participant variability, the derived predicted errors in this 

study will be inflated.

Third, the effect of the lifting technique was not examined in the current study as the 

participants were instructed to use a free style technique for the lifting trials. A further 

analysis showed that the extreme knee angle was close to 90 degree for all the participants 

when they lifted the weight from the ground. Such a lifting technique can be considered a 

semi-squat (Faber et al. 2010). Lifting techniques can be altered by training and experiences 

(Schibye et al. 2003, Keir and MacDonell 2004) and have a potential for changing the static 

and dynamic L5/S1 moments (van Dieen et al. 1999). Therefore, lifting techniques may 
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affect the validity of the results of the current study. Investigation into effects of different 

lifting techniques such as stoop vs. squat is recommended.

Fourth, it should be noted that only male participants were recruited in the current study due 

to the experimental setup. Based on the biomechanical models used in the study, the same 

anthropometric and motion data of different genders would not yield a significant difference 

in the calculated spinal moments. Therefore, the validity of the study findings would not be 

significantly compromised by the absence of female participants. One can argue that there is 

some evidence that male and female workers have different lifting techniques (Jager et al. 

1991, Lindback and Kjellberg 2001), which may impact the spinal loading for the same 

lifting task. In our opinion, the effect of gender is likely to be confounded within the effect 

of the lifting technique.

Lastly, the feet of the participants were fixed in the experiment to accommodate the 

limitations of the force plates used in the study. In reality, people tend to move their feet 

forward when placing the load to reduce the moment arm for the lifting task, resulting in 

reduced spinal moments. By restricting the participants’ feet during the testing, the study 

may have artificially increased the spinal moments at the set-down points of the lifting trials. 

This artificial increase, however, would have similar effects on both static and dynamic 

spinal moments because of the equally reduced moment arms. Therefore, feet position may 

not have a significant effect on the validity of the two proposed methods for estimating 

cumulative spinal moments.

In summary, caution should be exercised while applying the regression models to estimate 

cumulative spinal moments because several other variables that were not evaluated in the 

study may have a potential for affecting the validity of the models. If variations in the lifting 

technique are small and the lifting speeds are not very high, the proposed methods for 

estimating cumulative spinal moments should have practical applications for field 

surveillance.
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Practitioner Summary

The proposed regression models may provide a practical approach for predicting the 

cumulative dynamic L5/S1 joint loading of a lifting task for field studies since it requires 

only the lifting duration and the static moments at the lift-off and/or set-down instants of 

the lift.
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Figure 1. 
Experimental setup for the lifting tasks. There were three lifting ranges (from floor to 

knuckle height, floor to shoulder height, knuckle to shoulder height) and three lifting 

asymmetric angles (0 deg, 30 deg and 60 deg to the right).
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Figure 2. 
Y-axis is the total L5/S1 moment. X-axis is the time of the lifting course. The thin solid 

curve is the dynamic L5/S1 joint moment during a lifting task (floor to shoulder height, 60 

degree to the right). The thin dash line is the static L5/S1 joint moment. The bold solid curve 

is the reference L5/S1 joint moment from lift-off to set-down. The area under the bold dash 

line represents the TRAPEZOID method. The area under the bold dash-dot line represents 

the RECTANGLE method. Points A and C are the dynamic L5/S1 joint moment at lift-off 

and set-down, respectively. Points B and D are the static L5/S1 joint moment at lift-off and 

set-down, respectively.
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Figure 3. 
Upper chart: The relation between the area of the TRAPEZOID and the reference 

cumulative dynamic L5/S1 joint moment. Lower chart: The relation between the area of the 

RECTANGLE and the reference cumulative dynamic L5/S1 joint moment. The solid line is 

the linear regression line. The dash line is the diagonal line. The dataset consists of the 

means across the replication.
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Figure 4. 
The effect of lifting range on the absolute error.
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Table 1

Summary of ANOVA for the absolute error of the regression models.

RECTANGLE method TRAPEZOID method

F value p-value F-value p-value

Participants 1.72 0.182 1.31 0.223

Lifting range 14.26 < .0001 17.06 < .0001

Asymmetric angle 1.23 0.300 0.75 0.47

Lifting range × asymmetric angle 1.18 0.316 0.96 0.432
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